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Abstract
In this study, a novel strategy based on the integration of differential algebraic spectral theory (DAST) and spectral Lyapunov
function is presented to analyze and design a time-varying extended state observer (TESO) for a class of nonlinear systems
with unknown dynamics. The simultaneous estimation of the lumped disturbance and state vectors are achieved by using a
TESO based on the time-varying parallel differential (PD) eigenvalues of the observer. The observer bandwidth design is
based on the combination of DAST and spectral Lyapunov function. By using this method, a systematic approach is derived
to obtain the observer parameters, which improves boundedness of the observer estimation error in terms of transient and
persistent performance. A comparison between TESO and previous similar methods is provided in the simulation part upon
the TMUBOT quadruped robot dynamic model which indicates a distinguished answer in the estimation error of the TESO.
Moreover, by applying the proposed algorithm to the TMUBOT robot, the superiority of the algorithm in practical schemes
will be illustrated.

Keywords Active disturbance rejection control · Extended state observer · Differential algebraic spectral theory ·
Spectral Lyapunov function

1 Introduction

Disturbances and uncertainties occur in many industrial sys-
tems in the form of external disturbances and unknown
dynamics. Control of such systems is usually associated
with difficulties and high costs in hardware implementa-
tion and has become a cardinal interest for researchers in
recent decades. A solution introduced to this problem is
the use of disturbance observers as a powerful tool for
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estimation and compensation of various disturbances which
also improves the control performance, and has been deeply
discussed in the literature [1–4]. Another way of disturbance
estimation is the use of extended state observers (ESO’s)
[5–7], for active disturbance rejection. In this method,
all of the internal and external disturbances are consid-
ered as a lumped disturbance state, and then the extended
state vector of the augmented system is estimated. Due
to its’ advantages, including ease of analysis and design
and also great efficiency, this method has been used in
different industries, such as robotics, aerospace, electrical
machines and so on. [8–11]. In early works linear ESO
(LESO) was used for estimation and compensation of the
disturbances in systems. This method provides easy analy-
sis and simplicity of parameter tuning [12–14]. Moreover,
when an extended state observer based control structure
(The ADRC approach) is used, the tracking error will be
more decreased than some classic control structures, like
PID controller. This issue has been investigated in many
studies [15, 16]. Also, [17], has presented a practical veri-
fication of an extended state observer based PD controller
method in governing a multidimensional system which
ADRC robustness experimentally has compared with the
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results obtained from using a classic PID controller and
significantly better results, in terms of parametric robust-
ness, have been reported for the ADRC approach. However,
the linear structure of the LESO may not be appropriate
for complicated systems, due to its loss of design flexibility
[18, Ch.14]. Additionally, LESO may require large observer
gains to have an acceptable performance, which may cause
large control signals and even peaking phenomenon may
appear in the case of large gains and as a result, it is inappro-
priate for practical schemes [19]. Nonlinear ESO (NESO)
is another class of these observers. Due to their nonlinear
structures, NESO yields a better efficiency in the estima-
tion of variables (lumped disturbance and state vectors),
compared to LESO. However, because of its sophisticated
nonlinear structure, rigorous stability derivation for NESO
is difficult to be carried out. Also, the nonlinear structure
needs more conservative conditions in the design process,
which may be physically infeasible [20]. The convergence
analysis of the NESO has been discussed in [21], for SISO
systems, and in [22] for MIMO systems. It is desirable to
design an observer that can benefit from the advantages of
both LESO’s and NESO’s to overcome the aforementioned
difficulties, to derive a proper simultaneous estimation of
disturbances and states of the system. Hence, time-varying
extended state observers (TESO’s), as a new class of ESO,
has been introduced in [23], which in particular could have a
linear structure with time-varying parameters. Boundedness
of the estimation error dynamic of TESO was investigated
based on the theorems of LTV systems, such as Floquent
factorization, and differential algebraic spectral theory [24–
27]. Nevertheless, this work has not provided any solutions
on how to analyze and design the observer’s time-varying
parameters.

In this paper, by analyzing the convergence of the
observer estimation error using DAST and spectral Lya-
punov function, the relationship between observer’s band-
width and parameters of the estimation error envelope has
been acquired. As a result, a systematic procedure for
appropriate designing of the observer bandwidth and PD
eigenvalues will be determined to improve performance
in the transient and persistent response of the observer
estimation error. In other words, by assigning a proper
time-varying PD spectrum not only the uniform ultimate
boundedness of the estimation error is guaranteed, but also
a proper flexibility in designing of the observer parameters
will be attained, which make it applicable to use in practical
applications. Verification of the proposed method through
simulation and implementation on the TMUBOT quadruped
robot in the motion scenario has been investigated.
Quadruped robot is a system with a complicated dynamic
equation which includes internal and external disturbances
[28] and the experiment was performed with only partial
knowledge about the mathematical model of the plant.

The paper is organized as follows. Section 2 briefly intro-
duces the TESO structure and DAST. In Section 3, neces-
sary theorems for the convergence analysis of TESO and its
parameter design are provided. Necessary conditions for
convergence and also modifications for a better estimation
performance have been introduced in this section. Section 4,
which includes two parts, verifies the ability of the pre-
sented method through evaluating the results in simulation
and implementation on the TMUBOT robot. Section 5
includes conclusions which have been obtained via this
paper and future works.

2 The Problem Statement and Preliminaries

Consider the following n-dimensional nonlinear system, i.e.,

y(n) (t) = f
(
y(n−1) (t) , . . . , y (t) , w (t)

)
+ b0u (t) , (1)

Where u (t) and y(t) are the system input, and output,
respectively,b0 is a known constant, w (t) is the external
disturbance, and the unknown function f (.) represents the
nonlinear dynamics of the system, which could include
uncertainties and considered as the total disturbance.
System (1) is used as a mathematical model for a large
variety of practical systems. It is assumed that f (.) is locally
Lipschitz and differentiable with the derivative of the form:

ḟ =h
(
y(n−1) (t) , . . . ,y (t) ,w (t)

)
, (2)

where h is assumed to be an unknown, but bounded
function. In order to tackle the problem regarding the lack of
other information about the system, a time-varying extended
state observer (TESO) will be used to estimate the unknown
function f (.). Equation 1 can be rewritten in the extended
state spaceform, i.e.,
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1=x2
...
ẋn−1=xn

ẋn=xn+1+b0u

ẋn+1=h (x,w)

y=x1

, (3)

where y = x1 and x = [x1, . . . , xn+1]T . Equation 3
is called the extended form of system (1), since the total
disturbance,f is considered as a new state of the system,
xn+1. The general form of the TESO can be written in the
following form [23]:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

˙̂x1 (t) =x̂2 (t) −l1 (t)
(
x̂1 (t) −y (t)

)
˙̂x2 (t) =x̂3 (t) −l2 (t)

(
x̂1 (t) −y (t)

)
...
˙̂xn (t) =x̂n+1 (t) −ln(t)

(
x̂1 (t) −y (t)

) +b0u(t)
˙̂xn+1= −ln+1 (t)

(
x̂1 (t) −y (t)

)
, (4)
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Here x̂i (t) , i = 1, . . . , n + 1, is the estimated value of
xi and li (t) , i = 1, . . . , n + 1, is the observer gain to
be designed. By subtracting Eq.(3) from Eq.(4), the error
dynamic equation of TESO will be obtained as:
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ė1=e2−l1 (t) e1
...
ėn−1=en−ln−1 (t) e1

ėn=en+1−ln (t) e1

ėn+1= −ln+1 (t) e1−h (x,w)

. (5)

Where ei (t) = x̂i (t) − xi(t) and e = [
e1. . . . .en+1

]T .
Equation 5 can be rewritten in the following matrix form:

ė=A (t) e+b (−h (x.w)) , (6)

Where

A (t) =

⎡
⎢⎢⎢⎢⎢⎣

−l1(t) 1
−l2(t) 0

0 0 0
1 . . . 0

...
...

−ln(t) 0
−ln+1(t) 0

. . .
. . .

...
. . . 0 1
0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, b=

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦

Equation 6 shows a linear time-varying system, perturbed
with unknown but bounded dynamic as follows:

‖b(−h(x.w))‖≤δ (7)

On the other hand, Eq. 6 is a canonical form of LTV systems
that are uniformly controllable [29]. The perturbed term is
nonvanishing in general, thus the origin is not necessarily an
equilibrium point of the perturbed system (6) and therefore,
in this case, ultimate boundedness of the solutions of the
perturbed system is studied [18]. The main problem is
to find li (t) such that the ultimate boundedness of the
estimation error dynamics is guaranteed. For this purpose,
first, the stability analysis of the homogeneous form of
Eq. 6, as a nominal system is expressed and according to
the gained results, the relationships between PD eigenvalues
and the parameters of the estimation error upper bound of
TESO will be determined. In fact, these relationships will be
achieved by using DAST and spectral Lyapunov function.
Then, a systematic approach has been provided for the joint
estimation of states and disturbances and it will be shown
that, how the designer can decrease amplitude, increase
convergence and keep the final value of the estimation error
upper bound of the TESO in Eq. 4 in order to improve
the performance of the estimation error. Finally, the results
will be extended to the non-homogeneous system (6) and it
will be illustrated that how the observer bandwidth affects
the estimation error upper bound parameters. Before doing
so, it is necessary to transform (6) into the canonical
phase variable format. This will be discussed in the next
subsection.

2.1 Canonical Transformation of the TESO Error
Dynamics Equations

Due to the fact that phase variable canonical form is used in
DAST, first, Eq. 6 should convert to this form. For this purpose,
the presented results in [27], have been used. Finally, a
comprehensive analysis of the stability and estimate error
bounds of the proposed TESO (4) will be conducted. The
phase variable canonical form of Eq. 6 is as follows:

ż=Ac (t) z+bc (−h (x,w)) ,

Ac (t) =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 1 0 ... 0
0 0 1 . . . 0
...

...
. . .

. . . ...
0 0 · · · 0 1

a1(t) a2(t) · · · an(t) an+1(t)

⎤
⎥⎥⎥⎥⎥⎥⎦

, bc =

⎡
⎢⎢⎢⎢⎢⎣

0
0
...
0
1

⎤
⎥⎥⎥⎥⎥⎦

.

(8)

where ai(t) is assumed to be continuous, differentiable
of order n and bounded. Let z = T (t) e, where the
transformation matrix T (t) is defined as follows [30]:

T (t) =Mcz(t)M
−1
ce

(t). (9)

In the above equation Mce and Mcz are the controllability
matrices of the LTV system (6) and (8), respectively.

Definition 1 [27] Matrix T (t), is said to be Lyapunov
transformation matrix if:

i) T (t) and Ṫ (t), are continuous.
ii) T (t) is nonsingular.

iii) ‖T (t)‖, and
∥∥T −1(t)

∥∥ are bounded.

Regarding the fact that ai(t) is continuous, differentiable
and bounded, T (t) is considered as a Lyapunov transforma-
tion. If T (t) is a Lyapunov transformation matrix, then the
following relationships are established:

A (t) =T −1 (t)
(
Az (t) T (t) −Ṫ (t)

)
, (10)

b=T −1 (t) bc (11)

To obtain the observer gain, li (t) in Eq. 6 through the
element ai(t) in Eq. 7, define the vector of observer
parameters, i.e.,

L (t) = [−l1 (t) . . . −ln+1(t)
]T

, (12)

And divide T (t) into n + 1 columns as

T (t) = [−T1 (t) . . .−Tn+1(t)
]T (13)

where the column vector Ti (t) ∈ Rn+1, i = 1, 2, . . . , n+1.
Based on Eq. 10, the vector of observer parameters is
calculated as:

L (t) =T −1 (t)
(
Az (t) T1 (t) −Ṫ1 (t)

)
(14)
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According to Eq. 14, it was shown that how li (t) can be
written based on ai(t). For instance, for a second order
system with a third order extended state observer, the
following results obtain:

T = (t)

⎡
⎣

1 0 0
−a3(t) 1 0

ȧ3(t) + a2
3(t) − a2(t) −a3(t) 1

⎤
⎦ , (15)

⎧⎨
⎩

l1 (t)=a3 (t)

l2 (t)=a2 (t)−2ȧ3 (t)

l3 (t)=a1 (t)+ä3 (t)−ȧ2 (t)

. (16)

2.2 Overview of the DAST [26]

DAST for LTV systems is a generalization of algebraic
spectral theory of LTI systems. The PD eigenvalues that
have defined in DAST are different from the frozen time
eigenvalues calculated as follows:

ẋ = Ax(t), det (Iλ (t)−A (t)) (17)

Consider the following LTV system:

ż=Az (t) z,z (t0)=z0, t≥t0 (18)

Where Az (t) is a continuous, bounded matrix, defined as:

Az (t) =

⎡
⎢⎢⎢⎣

0
... In−1

0
−a1(t) −a2(t) · · · −an(t)

⎤
⎥⎥⎥⎦ . (19)

If it is assumed thaty = z1, then the corresponding time-
varying differential equation is as follows:

yn+αn (t) yn−1+ . . .+α2 (t) ẏ+α1 (t) y= 0 (20)

The general solution to Eq. 20 is:

y (t)=
∑n

k=1
cke

∫ t
t0 ρk(τ )dτ (21)

Where the set {ρk(t)} n
k=1 is a parallel differential (PD)

spectrum of Eq. 20, and ρk(t) are PD eigenvalues of Az(t).
The PD characteristic equation of Eq. 18 is:

�(ρ) = Dn−1
ρ (ρ)+αn (t) Dn−2

ρ (ρ)+ . . .+α3 (t)Dρ (ρ)+α2 (t) ρ+α1 (t) = 0

Dρ (ρ) =
[

d

dt
+ρ (t)

]
ρ (t) ,Dk

ρ=DρDk−1
ρ . (22)

The solutions of Eq. 22 are the PD eigenvalues of Eq. 18.
Also, there exists an eigenvector μi(t) for each of the PD
eigenvalues ρi(t), which satisfy the following equation:

Az (t) μi (t) −ρi (t) μi (t)=μ̇i (t) (23)

Where μi(t) is defined as:

μi (t) =[1Dρi (1)D2
ρi

(1) . . .Dn−1
ρi

(1)]T (24)

The diagonal matrix of ρi(t) is defined as follows:

ψ (t) =diag [ρ1 (t) ,ρ2 (t) , . . . ,ρn(t)] (25)

where, ψ (t) is the PD spectral canonical form of Az (t). The
PD modal matrix for Az (t) is defined as follows:

M (t) = [μ1 (t) μ2 (t) . . .μn(t)] (26)

A PD spectrum, such as {ρk(t)} n
k=1 is said to be well-

defined, if all of its PD eigenvalues are bounded, continuous
and differentiable of order n.

Definition 2 The PD modal matrix is called diffeomor-
phism if:

i) it is continuous and differentiable.
ii) its inverse is continuous and differentiable.

If a bounded PD modal matrix is diffeomorphism then it
would be a Lyapunov transformation matrix. The following

equation can be used to derive the PD spectral canonical
form of Az (t):

ψ (t)=M−1 (t)
[
Az (t)M (t) −Ṁ (t)

]
(27)

In this paper, the required Lyapunov candidates for
investigating the exponential stability of Eq. 8 are derived
based on the PD modal matrix and this Lyapunov
function is called Spectral Lyapunov function. Then,
a design procedure for the PD eigenvalues and time
shaping of the time-varying observer bandwidth is derived
and accordingly, by shaping the observer bandwidth, the
observer estimation error will be improved. If z = 0 is the
stable exponential equilibrium point for Eq. 18, then there
exists a Lyapunov function as follows:

Vz (t,z) =z∗ (t) Pz (t) z(t) (28)

with its time derivative as:

V̇z (t,z) = −z∗ (t) Qz (t) z (t) (29)

In Eqs. 28 and 29, Pz (t) and Qz (t) are positive definite
matrices for all t > 0 and have the following relation [26]:

Pz (t) =
∫ ∞

t

ϕ∗
z (τ ,t)Qz (τ ) ϕz (τ ,t) dτ (30)

where ϕz (τ, t) is the state transition matrix for the system
(18). In the above equations * means the transpose
conjugate. The following lemma provides the transformed
Lyapunov matrices under Lyapunov transformation of an
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original stable system. According to lemma1, the stability
of a system is retained under Lyapunov transformation.
Lemma1 will be used to verify the stability of Eqs. 6 and 8,
that are linked through a Lyapunov transformation.

Lemma 1 [26] For the exponentially stable system (18),
with Lyapunov transformation matrix M(t), using state
transformation:

x (t) =M (t) z (t) (31)

then, the transformed system is as follows:

ẋ=Ax (t) x (32)

and x = 0 is the exponentially stable equilibrium of Eq. 32,
where:

Ax (t) =M−1 (t) Az (t)M (t) −M−1(t)Ṁ(t) (33)

and there exists a Lyapunov function Vx (t, x) = x∗ (t) Px (t)

x(t), with time derivative V̇x (t, x) = −x∗ (t) Qx (t) x(t),
where Px (t) > 0 and Qx (t) > 0 are given by:

Px (t) =M∗−1 (t) Pz (t) M−1(t) (34)

Qx (t) =M∗−1 (t)Qz (t)M−1 (t) (35)

3 Stability and Estimate Error Bound
Analysis of TESO

In this section, theorems on the boundedness of TESO
estimation error using spectral Lyapunov function will
be examined. According to Eq. 6, the TESO estimation
error is an LTV perturbed system. First, Theorem 1 for
the homogeneous form of TESO estimation error will be
presented and derive some conclusions on how to design
the PD eigenvalues or bandwidth of TESO. Then, the
relationship of TESO’s PD eigenvalues with the estimation
error upper bound parameters of TESO is determined.
Using these results, the time shaping of the observer
bandwidth to provide a better estimation is investigated.
Based on the mentioned points, the stability analysis of the
homogeneous form of system (6), will be explored based
on the spectral Lyapunov function. The presented theorem
and the design method will then be generalized for the
case of the non-homogeneous dynamical error equation (6),
through Theorem 2.

Theorem 1 Let ψ (t), be a well-defined PD spectral matrix
for the homogeneous form of Eq. 8, and M(t) be the
corresponding bounded and diffeomorphism PD modal
matrix given in Eq. 26. If Re (ρk (t)) < 0, then the
homogeneous form of Eq. 8 is exponentially stable and there
exists a Lyapunov function Vz (t, z) = z∗ (t) Pz (t) z(t),

with time derivative V̇z (t, z) = −z∗ (t) Qz (t) z(t), where
Pz (t) > 0 and Qz (t) > 0 are the Lyapunov matrices for
examining the stability of homogeneous form of Eq. 8, and
are as follows:

Pz (t) =M∗−1
(t) M−1 (t) ,

Qz (t) = −2M∗−1
(t) Re (ψ (t)) M−1 (t) (36)

Proof If ψ (t) satisfies Re (ρk (t)) < 0, k = 1, . . . , n,
and define ε (t) = M−1 (t) z(t), since M(t) is a Lyapunov
transformation, therefore the transformation will not change
the stability of the system [Lemma 1]. According to Eq. 27,
the modal form of homogenous system (8), will beobtained
as follows:

ε̇=ψ (t) ε (37)

If Vε (t, ε) = ε∗ (t) Pε(t)ε(t), Pε (t) = I , is a Lyapunov
function for Eq. 37 then its time derivative along the
trajectories is:

V̇ε (t,ε) = 2ε∗ (t) Re (ψ (t)) ε (t) (38)

It is obvious that V̇ε (t, ε) < 0, due to the fact that
Re (ψ (t)) < 0. Therefore, ε = 0 is the exponentially stable
equilibrium for Eq. 37. Using (34) and (35), The Lyapunov
matrices related to the Lyapunov function, that proves the
exponential stability of homogenous form of Eq. 8, are then
derived from Eq. 36. Finally, because (8) was derived by the
application of the Lyapunov transformation, T (t) on Eq. 6,
it can be concluded that e = 0 is the exponentially stable
equilibrium of the homogenous form of Eq. 6.

Remark 1 According to theorem1, only negative PD
eigenvalues should be considered in the design process.
In other words, theorem1, not only proves the stability
of the homogeneous dynamical error equation (6), but
also provides a relationship between the PD modal matrix
M(t) and observer parameters in order to improve TESO
estimation performance.

Remark 2 According to [18, Theorem 4-12], the following
upper bound for TESO estimation error is established:

‖e(t)‖ ≤κ ‖e(t0)‖ e−μ(t−t0) (39)

Where

κ=
√

c2

c1
,μ= c3

2c2
(40)

The coefficients c1-c4 are calculated as follows:

c1=(λk(Pz (t) )),c2=(λk(Pz (t) )),

c3=(λk(Qz (t) )),c4=(λk(Qz (t) )). (41)
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Where λk(X(t)) denotes the kth algebraic eigenvalue of
the time-varying matrix X(t). According to Eqs. 40, 41
and 36, κ and μ depend onρi (t). Also, ρi (t) can be con-
sidered as a coefficient of the observer bandwidth and a
constant eigenvalue. Therefore, by designing proper con-
stant eigenvalues and bandwidth, it is possible to improve
the gain and the convergence rate of TESO estimation error
upper bound, i.e. a proper bandwidth and constant eigen-
value can decrease the gain and increase the convergence
rate of TESO estimation error upper bound resulting in bet-
ter estimation of internal and external disturbances. Hence,
the overall performance of the system besides the controller
will increase.

The above results are also applicable for the non-homo-
geneous system (6). Theorem 2 provides conditions for the
boundedness of the non-homogeneous form of system (6)
using spectral Lyapunov function. In theorem 2, the results
of the [18, Lemma 9.2] have been used.

Theorem 2 For the LTV perturbed system (6), assume a
Lyapunov transformation z = T (t) e that transforms (6)
into (8). Also, Consider {ρk(t)}nk=1, is the PD spectrum of
Eq. 6 where ρk (t) are bounded, continuous, and differen-
tiable. Let M(t) be the corresponding bounded and diffeomor-
phism PD modal matrix. Also, assume that(ρk (t)) < 0,and
the perturbed term b(−h (x, w)), is nonvanishing in the
origin which satisfies the following condition:

‖−bh(x,w)‖≤δ<
c3

c4

√
c1

c2
θr (42)

Then, for t ≥ 0, and e∈ D, D = {e ∈ Rn| ‖e‖ < r}, and

0 < θ < 1,with ‖e(t0)‖ <
√

c1
c2

r , e(t) would satisfy the

following:
{ ‖e(t)‖ <κexp−γ (t−t0) ‖e (t0)‖ , ∀t0≤t≤t0+T

‖e(t)‖ ≤η, ∀t≥t0+T .
(43)

where

κ=
√

c2

c1
,γ= (1−θ)c3

2c2
,η=c4

c3

√
c2

c1

δ

θ
(44)

The coefficients c1-c4 are already defined in Eq. 41.

Proof According to Theorem 1, if ψe (t) is the PD
spectral matrix for A(t) in Eq. 6, and also condition
Re (ρi (t)) < 0 holds, then the homogenized system (6),
will be exponentially stable, and e = 0 is the stable
equilibrium point of the system. For such a system, a
Lyapunov function v(te) is defined as follows:

v (t,e) =eT P (t) e (45)

WhereP (t) = M∗−1
(t)M−1 (t), satisfies Lyapunov

equation, −Ṗ (t) = P (t) A (t)+AT (t) P (t)+Q(t). Also,

the following conditions hold for the Lyapunov function
v(te), [18]:

c1 ‖e‖2 ≤v (t,e) ≤c2 ‖e‖2 (46)

∂v

∂t
+∂v

∂e
(A (t) e) ≤ −c3 ‖e‖2 (47)

∥∥∥∥
∂v

∂e

∥∥∥∥≤c4 ‖e‖ (48)

By using Eq. 45 and aforementioned conditions, Eqs. 46,
47, 48, for the perturbed system (6), the derivative of v(t, e)

along the trajectories satisfies:

v̇ (t,e) =ėT P (t) e+eT Ṗ (t) e+eT P (t)ė =
−eT Q (t) e+2eT P (t) (b (−h (x,w))) =
−eT Q (t)+∂v (t,e)

∂e
(b (−h (x,w))) ≤

−c3 ‖e‖2 +
∥∥∥∥

∂v (t,e)

∂e

∥∥∥∥ ‖b (−h (x,w))‖≤ −c3 ‖e‖2 +c4δ ‖e‖ (49)

By choosing a proper 0 < θ < 1, it can be shown that:

v̇ (t,e) ≤ − (1−θ) c3 ‖e‖2 −θc3 ‖e‖2 +c4δ ‖e‖

≤ − (1−θ) c3 ‖e‖2 , ∀ ‖e‖ ≥ δc4

θc3
(50)

Therefore, v (t, e) is a spectral Lyapunov function for Eq. 6
because the Lyapunov matrices are composed of PD modal
matrix M(t). Finally, according to [18, lemma 9.2], if Eq. 42
holds, then Eq. 43 can be established.

Remark 3 It can be concluded from Theorem 2 that TESO
estimation error upper bound parameters can be controlled
by PD eigenvalues of TESO estimation error or observer
bandwidth. In other words, the designer can investigate the
effect of the observer bandwidth on each of these parameters
and find appropriate values of the observer bandwidth to
have the desired performance in the estimation error of the
observer response.

In the next part, the proposed algorithm is applied to
the TMUBOT Quadruped robot with twelve degrees of
freedom, in order to verify the TESO performance in the
estimation of unknown dynamics. Also, the process of
designing TESO bandwidth is investigated.

4 Experimental Results

To have a proper assessment of the effectiveness of the
proposed theory, TMUBOT robot has been used as a
real platform (see Fig. 1). Simulation and implementation
results of the proposed algorithm on TMUBOT robot have
been presented through some real scenarios. TMUBOT has
been designed and built in the intelligent control systems
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Fig. 1 TMUBOT quadruped robot at ICSLAB

laboratory (ICSLAB) at Tarbiat Modares University and
it is a quadruped robot with twelve degrees of freedom
(DOF) with each leg of the robot having three DOFs
(see Fig. 2). Table 1 shows some physical and mechanical
features of the system [31]. Since the considered system
is a MIMO system, decentralized structure of the system
has been derived and used therefore, the system dynamic
equation has converted to SISO sub-systems. Finally, for
each sub-system, a TESO has been designed in order
to estimate and compensate internal disturbance caused
the couplings between the subsystems and also, external
disturbance due to the collision of the robot’s foot to the
ground and the friction force. In the simulation part, a
comparison between the performance of TESO and LESO
estimation error has been made. Also, in the implementation
part, a TESO has been designed for each joint of the
robot which compensates the lumped disturbance through

Fig. 2 The leg structure of TMUBOT

a decentralized PD controller (active disturbance rejection
structure). The proposed structure has been applied to
TMUBOT and the utilized results have been compared with
a decentralized PID controller in the same conditions.

4.1 Simulation Results

In this section, the dynamic model of a quadruped walking
robot is presented briefly, and then the decentralized dynamic
equations of the system are extracted. Therefore, each joint
of the robot is considered a sub-system and a TESO and PD
controller are designed for each sub-system in order to track
the desired gait. The dynamic model of the quadruped robot
based on the active joint variables is given by [32]

Mq̈ + Cq̇ + G + D = τ − τf − J T
g Fg (51)

WhereM = M (q) + LT Mo (xo) L,L = J+
o (xo) Je (q) ,

C = C (q,q̇) + LT
(
MoL̇ + Co (xo,ẋo) L

)
, G = G (q) +

LT Go (xo) and D = D. Equation 51 includes leg and body
dynamics, where q is the joint position vector, τ is the vector
of joint torques, τf is the joint friction, M (q) is the inertia
matrix of the leg,C (q,q̇) is the vector of leg centrifugal and
Coriolis terms, G (q) is the vector of leg gravity terms, D

is the vector of leg external disturbances, Fg is the vector
of ground reaction forces of the leg. Furthermore, xo is the
position/orientation vector of the body, Mo is the symmetric
positive definite inertia matrix of the body, Co is the Corioli
and centrifugal matrix, Go is the gravitational force vector
and Je, Jg , Jo are the Jacobian matrix from the connect
point of the legs to the joint space, Jacobian matrix related
to the ground reaction forces, Jacobian matrix from the body
to the leg frame respectively [33]. According to Eq. 51,
the dynamic equation of active joints of the robot, as a
sub-system can be rewritten as follows:

q̈i (t) = bi(q)ui(t) + fi(qq̇xo) (52)

Where in Eq. 52, i = 1 . . . 12 shows the index of each
sub-system or the number of active degrees of freedom of
the system, q = [q1 . . . q12]T is the vector of active joint
variables, ui is the joint torque created by the actuators
of the system or system inputs, bi is the system input
coefficient and fi(qq̇xo) is the dynamic term that consists
of all couplings between active and inactive joints. By
considering state equations as xi,1 (t) = qi (t) , xi,2(t) =
q̇i (t), the general state space form of Eq. 52 is as follows:
{

ẋi,1(t) = xi,2(t)

ẋi,2 (t) = fi (q,q̇,xo) + bi (q) ui (t)
, (53)

Where (53), shows iSISO sub-system. The extended state
form of Eq. 53, is obtained as follows:⎧⎨
⎩

ẋi,1(t) = xi,2(t)

ẋi,2 (t) = fi (.) + bi (q) ui (t) ,

ẋi,3(t) = ḟi (q,q̇,xo)

(54)
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Table 1 TMUBOT physical and mechanical features

Body Length 88 cm Body Height From the Ground (with proper default angles) 50 cm Exterior Offset of the Hip 7 cm

Body Width 24 cm Body Weight 35 kg Hip Length 34 cm

Body Height 14 cm Approximate Portable Weight 10 kg Knee Length 30.5 cm

where, xi,3 is the extended state of ith sub-system
which represents all of theapplied internal and external
disturbances to each sub-system. Actually, Eq. 53 is the
general state space form of a quadruped robot and for
tracking a predefined gate e.g., walk or trot, xi,1 (t) xi,2(t)

should track their desired values ri,1(t), ṙi,1(t) respectively,
where ri,1(t) is the desired angular position and ṙi,1(t) is
the desired angular velocity of the related joint. According
to Eq. 4, a TESO is designed for Eq. 54 in order to estimate
and compensate the lumped disturbance and state vectors
simultaneously, as follow:
⎧⎨
⎩

˙̂xi,1 (t) = x̂i,2 (t) + βi,1 (t) ei,1 (t)
˙̂xi,2 (t) = x̂i,3 (t) + βi,2(t) ei,1 (t) + b̂i (q) ui(t)˙̂xi,3(t) = βi,3(t)ei,1(t)

, (55)

where x̂i,j is the estimated value of xi,j , ei,j (t) = xi,j (t) −
x̂i,j (t) is the estimation error and βi,j (t)j = 123 are
the observer parameters. Also, the control input of each
sub-system is designed as follows:

ui (t) = 1

b̂i (q)
(−f̂i (q,q̇) + ūi (t)), (56)

where in Eq. 56, ūi (t) = ki,1
(
ri(t) − x̂i,1(t)

) +
ki,2

(
ṙi (t) − ˙̂xi,2(t)

)
+ r̈i (t) is a PD controller and ki,1,

ki,2 are the design parameters. If βi,j (t) is designed so that
ei,j (t) = 0, then xi,j

∼= x̂i,j , b̂i

(
q̂
) ≈ bi (q). Therefore, the

closed loop system will be as follows:⎧⎨
⎩

ẋi,1 = xi,2

ẋi,2 = fi (q,q̇) + bi (qi )

(
1

b̂i (q̂)

(
−f̂i (q,q̇) + ūi (t)

))
= ūi (t)

. (57)

To wrap it, for each active joint of the TMUBOT a
TESO and a PD controller have been designed according
to Eqs. 55, 56 respectively. The considered structure is
shown in Fig. 3. Simulation of the plant (TMUBOT) and the
proposed algorithm have been performed in MSC ADAMS
software and the ground is modeled with the assumed
friction coefficient μ = 0.8, in order to avoid slipping (see
Fig. 4). According to the inverse kinematics of the robot,
the gait planer is designed in such a way to produce the
desired angular positions for a normal walking of the robot
on the ground. For instance, Fig. 5 shows the desired angles
of the joints for a walking locomotion. By proper tracking
of the gait planar signals, the physical stability of the robot
is guaranteed.

The first step is designing the TESO parametersli (t).
For this purpose, based on the previous section, the PD
eigenvalues ρi (t) are considered as:

ρi,j (t) = ρ̄i,jωi,ob (t) , i = 1, . . . , 12, j = 1, 2, 3, (58)

where ωi,ob(t) is the TESO bandwidth, ρi,1 = −ω0, ρi,2 =
ω0(−ξ + j

√
1 − ξ2) and ρi,3 = ω0(−ξ − j

√
1 − ξ2) are

the roots of considered filters. Also,ω0 = 1ξ = 0.707 and
the tuning of TESO parameters has done using Theorem
2. As it has been mentioned before, one of the significant
parts of TESO is the time-varying bandwidth ωi,ob(t). To
form the observer bandwidth based on Theorems 1 and 2,
the relation between ωi,ob with κ , γ, η and δ should be
analyzed. Therefore, the lumped disturbances that applied to
each of the robot’s joints must be examined. Figure 6 shows
the lumped disturbance torques that applied to the first

Fig. 3 The decentralized structure of TESO and PD controller that used for TMUBOT
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Fig. 4 Dynamic Simulation of
TMUBOT in MSC ADAMS
Environment

Fig. 5 Desired angular positions
for walking locomotion

Fig. 6 Lumped disturbance
torques that applied to the joints
in three axis for Leg 1
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Fig. 7 The upper bound
deviation of each joint in terms
of the observer bandwidth

leg joints of the robot (Since there is a similarity between
the robot legs, therefore the results of a single leg have
presented). According to Fig. 6, the following relations on
the norms of the lumped disturbance torques for each of the
joints are obtained:

‖−b1h1(x,w)‖∞ ≤ 25,

‖−b2h2(x,w)‖∞ ≤ 45,

‖−b3h3(x,w)‖∞ ≤ 75 (59)

Due to the disturbance bounds applied to each of the joints,
design of the observer bandwidth should happen in a way
that (59) holds at all times. By using (42), the upper
bound deviation of each joint perturbed term in the observer
bandwidth for the assumed eigenvalues is shown in Fig. 7. It
is necessary to point out that, there is an inverse relationship
between the observer performance in the estimation and the
amount of lumped disturbance. According to Fig. 7, the
minimum value of ω1,ob in order to satisfy (59) for all of
the joints are 4.09, 5.53 and 7.39 respectively. Moreover,
according to Eq. 44, the deviations of estimation error
envelope parameters on transient and steady-state response
in terms of the observer bandwidth have been shown in
Fig. 8. In order to have a desirable estimation, it is necessary

for the gain of the transient response of the estimation
error to be minimized and for its convergence rate to be
maximized. Also, the steady state response of the estimation
error converges to its minimum value over time. Thus, the
initial value of the observer bandwidth should equal to the
lowest value to satisfy the condition (42) or (59) and the
final value of the observer bandwidth, should be considered
according to the least steady state value possible for the
bandwidth of each of the joints, and calculated as follows:

ωob1 (t) =
{

2.1, t ≤ 0.5
8, t > 0.5

, (60)

ωob2 (t) =
{

2.1, t ≤ 0.5
8, t > 0.5

, (61)

ωob3 (t) =
{

4.1, t ≤ 0.5
8, t > 0.5

(62)

It is essential to note that an excessive increase in
the observer bandwidth causes the estimation of angular
velocity to have high volatility which causes instability
of the closed-loop system. Also, it is an indisputable fact
that there is a tradeoff between the gain of the transient
response and the convergence rate of the estimation error
envelope. This sequence repeats for other robot legs and

Fig. 8 Deviations of estimation
error envelope parameters on
transient and steady-state
response in terms of the
observer bandwidth
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Fig. 9 Lumped disturbances
estimation errors

Fig. 10 Position and velocity
tracking errors of Joint 1
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Fig. 11 Position and velocity
tracking errors of Joint 2

the PD eigenvalues of each joint are calculated by finding
the time shaping of the observer bandwidth and substituting
ωobi

in Eq. 58. Then the coefficients ai(t) are calculated
in terms of ρi (t) by using the Eq. 27. Finally, in order to
calculate the observer coefficientsli (t), Eq. 14 is used. In
order to clarify the better performance of the time varying
extended state observer, a linear extended state observer
with time-invariant parameters has been designed for each

of the robot joints, and the results of the two observers
have been compared together. Figure 9 shows the lumped
disturbance estimation errors of leg joints. According to
Fig. 9 the primary overshoot in the estimation error signal
of the time-varying extended state observer (the red graphs),
has been desirably reduced compared to the linear extended
state observer (the blue graphs). Moreover, the settling time
of the estimation error signal in the time-varying extended

Fig. 12 Position and velocity
tracking errors for Joint 3
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state observer is less than the time for the linear extended
state observer, which results in faster convergence in the
closed loop response of the system in each time interval.
This is due to the design ofωob, which is small at first,
and increases with time. For tracking the desired gate,
a proportional-derivative controller has been designed for
each joint, as follows:

ui = ki1
(
ri1 − x̂i1

)+ki2
(
ṙi1 − x̂i2

)+ r̈i1i = 1 . . . 12. (63)

In Eq. 63, ki1 and ki2 are the coefficients of the proportional-
derivative controller, ri1, ṙi1, and r̈i1 represent the desired
angular position, velocity and acceleration, respectively.
Furthermore,x̂i1 and x̂i2 denote the estimations of angular
position and angular velocity, respectively. The estimation
error of the angular position and angular velocity for each
of the robot joints of a leg, are shown in Figs. 10, 11 and
12. Also, Figs. 13 and 14 show the control signals that
applied to each leg joint by LESO and TESO respectively.
According to Figs. 10, 11 and 12, the overshoot of the
tracking errors in TESO structure are much less than LESO.
Therefore, the actuators of the system need less torque for
the desired tracking. Consequently, the cooperative work
of TESO and PD controller results in more energy saving.
Moreover, the settling time of tracking error is better when
using TESO-based control, compared to previous methods

(LESO algorithm), due to the fact that it provides better
stability in the robot movement process, especially when an
external force is applied to the system. It should be noted
that for having a highly precise estimation of the states
using the LESO algorithm, it is required to choose large
parameters, which usually cause saturation in the actuators
of the system, while this can be avoided when using TESO
algorithm.

4.2 Implementation Results

The aim of this part is to present a practical verification
of the proposed algorithm to control a complicated system
without a precise model. According to Eq. 52 the term,
fi(qq̇xo) includes all internal and external disturbances.
The disturbances include forces that measuring them is not
feasible or require expensive and high-resolution sensors.
They include the coupling forces, ground reaction forces,
friction forces. Whereas by using TESO algorithm, these
physical variables can be estimated and compensated from
the dynamic equations. As mentioned before, in this paper,
a quadrupedal robot is used to examine the performance of
the proposed algorithm. Each joint of TMUBOT is equipped
with a brushless DC motor as the actuator of the system
and the control signals are applied to the motors through

Fig. 13 Control signals applied
to the leg joints by using LESO
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Fig. 14 Control signals applied
to the leg joints by using TESO

EPOS2 drivers. Each joint has an encoder for measuring
the actual angular position and velocity to update the
TESO variable states and calculate the tracking error for
the PD controller. To evaluate the performance of TESO

algorithm, for each joint of TMUBOT, according to Eqs. 55,
63, a TESO and decentralized PD controller have been
designed. The obtained results were compared with the
most prevalent method, LESO algorithm, which is usually

Fig. 15 Position tracking errors
- Up: LESO and PD controller.
Down: TESO with PD controller
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Fig. 16 Velocity tracking errors
- Up: LESO and PD controller.
Down: TESO with PD controller

used in practical schemes. To have a reasonable comparison
between the performances of observers, the same control
algorithms (PD Controller) have been designed for each
observer. Figures 15 and 16, show the position and velocity
tracking errors of a leg’s joints of the robot by using
the LESO and TESO. According to Figs. 15 and 16, the
overshoot of position and velocity tracking errors in the
TESO algorithm is remarkably less than those of the LESO
algorithm. Furthermore, the settling times of both position
and velocity tracking error through TESO algorithm are

less than those of the LESO algorithm. In the LESO
algorithm, to have a sustainable movement for the robot
in the experiment, large parameters have been considered.
Hence, the difference between the settling times is not
substantial. Figure 17, shows the control signals of the
LESO and TESO algorithms. According to Fig. 17, the
control signals of actuators applied to joints through the
TESO algorithm are much smaller than those of the LESO
algorithm. Consequently, for the same trajectory, the TESO
algorithm needs less torque compared to LESO, and this

Fig. 17 Control signals - Up:
LESO and PD controller. Down:
TESO with PD controller
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leads to less energy consumption. Whereas, it is likely for
the control signal to pass the actuator saturation boundary
when using the LESO algorithm.

5 Conclusions and Future Work

Finding a way to control systems without having precise
information about their dynamics has been a challenge
for control engineers. In this study, TESO is proposed to
solve this problem. Boundedness of the estimation error
dynamics is an important subject in the evaluation of
observer design. Here, boundedness of the TESO estimation
error dynamics is proved by means of DAST and spectral
Lyapunov function. As a result, a design procedure for
the TESO parameters has been achieved. According to
the theorems presented here, the PD eigenvalues or the
time-varying bandwidth (ωob (t)) of the TESO estimation
error as designing parameters, have relationships with
the envelope parameters (gain, convergence rate and final
value) of the TESO estimation error. Actually, the proposed
theorems in this study, not only guarantee the stability
of the TESO estimation error with the help of DAST,
but also determined the relationship between the TESO
design parameters and estimation error upper bound of
the proposed observer. Therefore, by means of these
relationship criteria such as overshoot and settling time can
systematically be improved as much as possible. In order to
evaluate the performance of the proposed method and also
illustrate practical aspects of it, the TMUBOT quadruped
robot has been used as an experimental application and
a TESO with a PD controller has been applied to the
system. The results show improvements in the estimation
of internal and external disturbance by using TESO than
previous methods like LESO. Actually, designing time-
varying observer parameters yields better results than that
of time-invariant one. Furthermore, TESO-based control
structure has shown better performance in the estimation,
in terms of transient and steady-state response, compared to
the previous algorithms, e.g., LESO-based control structure.
In future developments, considering frequency analysis
in the design of observer bandwidth and applying other
types of controllers with stability analysis is suggested in
order to provide an even better performance. Moreover, by
implementing the proposed theorems in diverse scenarios,
e.g. applying an external force to the robot from the
environment or using TESO based control in other industrial
systems, the performance of the proposed method could be
proved.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.
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